Many slides from Pascal Vincent, "Deep Learning with Denoising Autoencoders".
Building good predictors on complex domains means learning complicated functions.

These are best represented by multiple levels of non-linear operations i.e. deep architectures.

Learning the parameters of deep architectures proved to be challenging!
Training deep architectures: attempted solutions

- **Solution 1**: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 → disappointing performance. Stuck in poor solutions.

- **Solution 2**: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.

Key seems to be good unsupervised layer-by-layer initialization. . .

- **Solution 3**: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2

 . . . but not quite. Can we do better?
Solution 1: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 → disappointing performance. Stuck in poor solutions.

Solution 2: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.

Key seems to be good unsupervised layer-by-layer initialization...

Solution 3: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2

...but not quite. Can we do better?
Training deep architectures: attempted solutions

- **Solution 1**: initialize at random, and do gradient descent (Rumelhart et al., 1986).
 → disappointing performance. Stuck in poor solutions.

- **Solution 2**: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down.
 → impressive performance.

 Key seems to be good unsupervised layer-by-layer initialization.

- **Solution 3**: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007)
 → Simple generic procedure, no sampling required.
 Performance almost as good as Solution 2

 ...but not quite. Can we do better?
Training deep architectures: attempted solutions

- **Solution 1**: initialize at random, and do gradient descent (Rumelhart et al., 1986). → disappointing performance. Stuck in poor solutions.

- **Solution 2**: Deep Belief Nets (Hinton et al., 2006): initialize by stacking Restricted Boltzmann Machines, fine-tune with Up-Down. → impressive performance.

 Key seems to be good unsupervised layer-by-layer initialization...

- **Solution 3**: initialize by stacking autoencoders, fine-tune with gradient descent. (Bengio et al., 2007; Ranzato et al., 2007) → Simple generic procedure, no sampling required. Performance almost as good as Solution 2
Open question: what would make a good unsupervised criterion for finding good initial intermediate representations?

- **Inspiration:** our ability to “fill-in-the-blanks” in sensory input. missing pixels, small occlusions, image from sound, …

- Good fill-in-the-blanks performance ↔ distribution is well captured.

- → old notion of associative memory (motivated Hopfield models (Hopfield, 1982))

unsupervised initialization by explicit fill-in-the-blanks training.
The denoising autoencoder

Clean input $x \in [0, 1]^d$ is partially destroyed, yielding corrupted input: $\tilde{x} \sim q_D(\tilde{x} | x)$.

\tilde{x} is mapped to hidden representation $y = f_\theta(\tilde{x})$.

From y we reconstruct a $z = g_{\theta'}(y)$.

Train parameters to minimize the cross-entropy "reconstruction error"
The denoising autoencoder

- Clean input $x \in [0, 1]^d$ is partially destroyed, yielding corrupted input: $\tilde{x} \sim q_D(\tilde{x}|x)$.

- \tilde{x} is mapped to hidden representation $y = f_\theta(\tilde{x})$.

- From y we reconstruct a $z = g_{\theta'}(y)$.

- Train parameters to minimize the cross-entropy “reconstruction error”
The denoising autoencoder

\[\tilde{x} \sim q_D(\tilde{x}|x) \]

- Clean input \(x \in [0, 1]^d \) is partially destroyed, yielding corrupted input: \(\tilde{x} \sim q_D(\tilde{x}|x) \).
- \(\tilde{x} \) is mapped to hidden representation \(y = f_\theta(\tilde{x}) \).
- From \(y \) we reconstruct a \(z = g_{\theta'}(y) \).
- Train parameters to minimize the cross-entropy “reconstruction error”
The denoising autoencoder

- Clean input \(x \in [0, 1]^d \) is partially destroyed, yielding corrupted input: \(\tilde{x} \sim q_D(\tilde{x}|x) \).
- \(\tilde{x} \) is mapped to hidden representation \(y = f_\theta(\tilde{x}) \).
- From \(y \) we reconstruct a \(z = g_{\theta'}(y) \).
- Train parameters to minimize the cross-entropy "reconstruction error"
The denoising autoencoder

- Clean input \(x \in [0, 1]^d \) is partially destroyed, yielding corrupted input: \(\tilde{x} \sim q_{D}(\tilde{x}|x) \).

- \(\tilde{x} \) is mapped to hidden representation \(y = f_{\theta}(\tilde{x}) \).

- From \(y \) we reconstruct a \(z = g_{\theta'}(y) \).

- Train parameters to minimize the cross-entropy “reconstruction error”
The input corruption process $q_D(\tilde{x}|x)$

- Choose a fixed proportion ν of components of x at random.
- Reset their values to 0.
- Can be viewed as replacing a component considered missing by a default value.

Other corruption processes could be considered.
We use standard sigmoid network layers:

- \(y = f_\theta(\tilde{x}) = \text{sigmoid}(\frac{W}{d'} \tilde{x} + \frac{b}{d'}) \)

- \(g_{\theta'}(y) = \text{sigmoid}(\frac{W'}{d} y + \frac{b'}{d}) \).

Denoising using autoencoders was actually introduced much earlier (LeCun, 1987; Gallinari et al., 1987), as an alternative to Hopfield networks (Hopfield, 1982).
We use standard sigmoid network layers:

- \(y = f_{\theta}(\tilde{x}) = \text{sigmoid}(W \tilde{x} + b) \)

- \(g_{\theta'}(y) = \text{sigmoid}(W' y + b') \).

Denoising using autoencoders was actually introduced much earlier (LeCun, 1987; Gallinari et al., 1987), as an alternative to Hopfield networks (Hopfield, 1982).
Learning first mapping f_θ by training as a denoising autoencoder.

- Remove scaffolding. Use f_θ directly on input yielding higher level representation.
- Learn next level mapping $f_\theta^{(2)}$ by training denoising autoencoder on current level representation.
- Iterate to initialize subsequent layers.
Learn first mapping f_θ by training as a denoising autoencoder.

Remove scaffolding. Use f_θ directly on input yielding higher level representation.

Learn next level mapping $f_\theta^{(2)}$ by training denoising autoencoder on current level representation.

Iterate to initialize subsequent layers.
1. Learn first mapping f_θ by training as a denoising autoencoder.
2. Remove scaffolding. Use f_θ directly on input yielding higher level representation.
3. Learn next level mapping $f_\theta^{(2)}$ by training denoising autoencoder on current level representation.
4. Iterate to initialize subsequent layers.
1. Learn first mapping f_θ by training as a denoising autoencoder.
2. Remove scaffolding. Use f_θ directly on input yielding higher level representation.
3. Learn next level mapping $f^{(2)}_\theta$ by training denoising autoencoder on current level representation.

Iterate to initialize subsequent layers.
1. Learn first mapping f_{θ} by training as a denoising autoencoder.

2. Remove scaffolding. Use f_{θ} directly on input yielding higher level representation.

3. Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.

4. Iterate to initialize subsequent layers.
1. Learn first mapping f_θ by training as a denoising autoencoder.

2. Remove scaffolding. Use f_θ directly on input yielding higher level representation.

3. Learn next level mapping $f^{(2)}_\theta$ by training denoising autoencoder on current level representation.

4. Iterate to initialize subsequent layers.
1. Learn first mapping f_θ by training as a denoising autoencoder.

2. Remove scaffolding. Use f_θ directly on input yielding higher level representation.

3. Learn next level mapping $f_{\theta}^{(2)}$ by training denoising autoencoder on current level representation.

4. Iterate to initialize subsequent layers.
• Initial deep mapping was learnt in an *unsupervised* way.

• → initialization for a supervised task.

• Output layer gets added.

• Global fine tuning by gradient descent on *supervised* criterion.
- Initial deep mapping was learnt in an *unsupervised* way.

- → *initialization* for a *supervised* task.

- Output layer gets added.

- Global fine tuning by gradient descent on a *supervised criterion*.
Initial deep mapping was learnt in an **unsupervised** way.

\rightarrow **Initialization** for a **supervised** task.

Output layer gets added.

Global fine tuning by gradient descent on **supervised criterion**.
Denoising autoencoder can be seen as a way to learn a manifold:

- Suppose training data (×) concentrate near a low-dimensional manifold.

- Corrupted examples (●) are obtained by applying corruption process \(q_D(\tilde{X}|X) \) and will lie farther from the manifold.

- The model learns with \(p(X|\tilde{X}) \) to “project them back” onto the manifold.

- Intermediate representation \(Y \) can be interpreted as a coordinate system for points on the manifold.
Benchmark problems
Variations on MNIST digit classification

basic: subset of original MNIST digits: 10,000 training samples, 2,000 validation samples, 50,000 test samples.

rot: applied random rotation (angle between 0 and 2π radians)

bg-rand: background made of random pixels (value in 0...255)

bg-img: background is random patch from one of 20 images

rot-bg-img: combination of rotation and background image
Benchmark problems
Shape discrimination

- **rect**: discriminate between tall and wide rectangles on black background.

- **rect-img**: borderless rectangle filled with random image patch. Background is a different image patch.

- **convex**: discriminate between convex and non-convex shapes.
- **SVM_{rbf}**: Support Vector Machines with Gaussian Kernel.
- **DBN-3**: Deep Belief Nets with 3 hidden layers (stacked Restricted Boltzmann Machines trained with contrastive divergence).
- **SAA-3**: Stacked Autoassociators with 3 hidden layers (no denoising).
- **SdA-3**: Stacked Denoising Autoassociators with 3 hidden layers.

Hyper-parameters for all algorithms were tuned based on classification performance on validation set. (In particular hidden-layer sizes, and ν for SdA-3).
Performance comparison

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM(_{rbf})</th>
<th>DBN-3</th>
<th>SAA-3</th>
<th>SdA-3 ((\nu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>3.03±0.15</td>
<td>3.11±0.15</td>
<td>3.46±0.16</td>
<td>2.80±0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11±0.28</td>
<td>10.30±0.27</td>
<td>10.30±0.27</td>
<td>10.29±0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58±0.31</td>
<td>6.73±0.22</td>
<td>11.28±0.28</td>
<td>10.38±0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61±0.37</td>
<td>16.31±0.32</td>
<td>23.00±0.37</td>
<td>16.68±0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18±0.44</td>
<td>47.39±0.44</td>
<td>51.93±0.44</td>
<td>44.49±0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15±0.13</td>
<td>2.60±0.14</td>
<td>2.41±0.13</td>
<td>1.99±0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04±0.37</td>
<td>22.50±0.37</td>
<td>24.05±0.37</td>
<td>21.59±0.36 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13±0.34</td>
<td>18.63±0.34</td>
<td>18.41±0.34</td>
<td>19.06±0.34 (10%)</td>
</tr>
</tbody>
</table>
Performance comparison

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM_{rbf}</th>
<th>DBN-3</th>
<th>SAA-3</th>
<th>SdA-3 (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>3.03 ± 0.15</td>
<td>3.11 ± 0.15</td>
<td>3.46 ± 0.16</td>
<td>2.80 ± 0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11 ± 0.28</td>
<td>10.30 ± 0.27</td>
<td>10.30 ± 0.27</td>
<td>10.29 ± 0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58 ± 0.31</td>
<td>6.73 ± 0.22</td>
<td>11.28 ± 0.28</td>
<td>10.38 ± 0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61 ± 0.37</td>
<td>16.31 ± 0.32</td>
<td>23.00 ± 0.37</td>
<td>16.68 ± 0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18 ± 0.44</td>
<td>47.39 ± 0.44</td>
<td>51.93 ± 0.44</td>
<td>44.49 ± 0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15 ± 0.13</td>
<td>2.60 ± 0.14</td>
<td>2.41 ± 0.13</td>
<td>1.99 ± 0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04 ± 0.37</td>
<td>22.50 ± 0.37</td>
<td>24.05 ± 0.37</td>
<td>21.59 ± 0.36 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13 ± 0.34</td>
<td>18.63 ± 0.34</td>
<td>18.41 ± 0.34</td>
<td>19.06 ± 0.34 (10%)</td>
</tr>
<tr>
<td>Dataset</td>
<td>SVM(_{rbf})</td>
<td>DBN-3</td>
<td>SAA-3</td>
<td>SdA-3 ((\nu))</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>basic</td>
<td>3.03 ± 0.15</td>
<td>3.11 ± 0.15</td>
<td>3.46 ± 0.16</td>
<td>2.80 ± 0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11 ± 0.28</td>
<td>10.30 ± 0.27</td>
<td>10.30 ± 0.27</td>
<td>10.29 ± 0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58 ± 0.31</td>
<td>6.73 ± 0.23</td>
<td>11.28 ± 0.28</td>
<td>10.38 ± 0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61 ± 0.37</td>
<td>16.31 ± 0.32</td>
<td>23.00 ± 0.37</td>
<td>16.68 ± 0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18 ± 0.44</td>
<td>47.39 ± 0.44</td>
<td>51.93 ± 0.44</td>
<td>44.49 ± 0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15 ± 0.13</td>
<td>2.60 ± 0.14</td>
<td>2.41 ± 0.13</td>
<td>1.99 ± 0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04 ± 0.37</td>
<td>22.50 ± 0.37</td>
<td>24.05 ± 0.37</td>
<td>21.59 ± 0.36 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13 ± 0.34</td>
<td>18.63 ± 0.34</td>
<td>18.41 ± 0.34</td>
<td>19.06 ± 0.34 (10%)</td>
</tr>
</tbody>
</table>
Performance comparison

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM<sub>rbf</sub></th>
<th>DBN-3</th>
<th>SAA-3</th>
<th>SdA-3 (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>3.03±0.15</td>
<td>3.11±0.15</td>
<td>3.46±0.16</td>
<td>2.80±0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11±0.28</td>
<td>10.30±0.27</td>
<td>10.30±0.27</td>
<td>10.29±0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58±0.31</td>
<td>6.73±0.23</td>
<td>11.28±0.26</td>
<td>10.38±0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61±0.37</td>
<td>16.31±0.32</td>
<td>23.00±0.37</td>
<td>16.68±0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18±0.44</td>
<td>47.39±0.44</td>
<td>51.93±0.44</td>
<td>44.49±0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15±0.13</td>
<td>2.60±0.14</td>
<td>2.41±0.13</td>
<td>1.99±0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04±0.37</td>
<td>22.50±0.37</td>
<td>24.05±0.37</td>
<td>21.59±0.36 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13±0.34</td>
<td>18.63±0.34</td>
<td>18.41±0.34</td>
<td>19.06±0.34 (10%)</td>
</tr>
</tbody>
</table>
Performance comparison

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM$_{rbf}$</th>
<th>DBN-3</th>
<th>SAA-3</th>
<th>SdA-3 (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>3.03 ± 0.15</td>
<td>3.11 ± 0.15</td>
<td>3.46 ± 0.16</td>
<td>2.80 ± 0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11 ± 0.28</td>
<td>10.30 ± 0.27</td>
<td>10.30 ± 0.27</td>
<td>10.29 ± 0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58 ± 0.31</td>
<td>6.73 ± 0.22</td>
<td>11.28 ± 0.26</td>
<td>10.38 ± 0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61 ± 0.37</td>
<td>16.31 ± 0.32</td>
<td>23.00 ± 0.37</td>
<td>16.68 ± 0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18 ± 0.44</td>
<td>47.39 ± 0.44</td>
<td>51.93 ± 0.44</td>
<td>44.49 ± 0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15 ± 0.13</td>
<td>2.60 ± 0.14</td>
<td>2.41 ± 0.13</td>
<td>1.99 ± 0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04 ± 0.37</td>
<td>22.50 ± 0.37</td>
<td>24.05 ± 0.37</td>
<td>21.59 ± 0.35 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13 ± 0.34</td>
<td>18.63 ± 0.34</td>
<td>18.41 ± 0.34</td>
<td>19.06 ± 0.34 (10%)</td>
</tr>
</tbody>
</table>
Performance comparison

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM_{rbf}</th>
<th>DBN-3</th>
<th>SAA-3</th>
<th>SdA-3 (ν)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>3.03±0.15</td>
<td>3.11±0.15</td>
<td>3.46±0.16</td>
<td>2.80±0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11±0.28</td>
<td>10.30±0.27</td>
<td>10.30±0.27</td>
<td>10.29±0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58±0.31</td>
<td>6.73±0.22</td>
<td>11.28±0.28</td>
<td>10.38±0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61±0.37</td>
<td>16.31±0.32</td>
<td>23.00±0.37</td>
<td>16.68±0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18±0.44</td>
<td>47.39±0.44</td>
<td>51.93±0.44</td>
<td>44.49±0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15±0.13</td>
<td>2.60±0.14</td>
<td>2.41±0.13</td>
<td>1.99±0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04±0.37</td>
<td>22.50±0.37</td>
<td>24.05±0.37</td>
<td>21.59±0.35 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13±0.34</td>
<td>18.63±0.34</td>
<td>18.41±0.34</td>
<td>19.06±0.34 (10%)</td>
</tr>
</tbody>
</table>
Performance comparison

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVM(_{rbf})</th>
<th>DBN-3</th>
<th>SAA-3</th>
<th>SdA-3 ((\nu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic</td>
<td>3.03 ± 0.15</td>
<td>3.11 ± 0.15</td>
<td>3.46 ± 0.16</td>
<td>2.80 ± 0.14 (10%)</td>
</tr>
<tr>
<td>rot</td>
<td>11.11 ± 0.28</td>
<td>10.30 ± 0.27</td>
<td>10.30 ± 0.27</td>
<td>10.29 ± 0.27 (10%)</td>
</tr>
<tr>
<td>bg-rand</td>
<td>14.58 ± 0.31</td>
<td>6.73 ± 0.22</td>
<td>11.28 ± 0.28</td>
<td>10.38 ± 0.27 (40%)</td>
</tr>
<tr>
<td>bg-img</td>
<td>22.61 ± 0.37</td>
<td>16.31 ± 0.32</td>
<td>23.00 ± 0.37</td>
<td>16.68 ± 0.33 (25%)</td>
</tr>
<tr>
<td>rot-bg-img</td>
<td>55.18 ± 0.44</td>
<td>47.39 ± 0.44</td>
<td>51.93 ± 0.44</td>
<td>44.49 ± 0.44 (25%)</td>
</tr>
<tr>
<td>rect</td>
<td>2.15 ± 0.13</td>
<td>2.60 ± 0.14</td>
<td>2.41 ± 0.13</td>
<td>1.99 ± 0.12 (10%)</td>
</tr>
<tr>
<td>rect-img</td>
<td>24.04 ± 0.37</td>
<td>22.50 ± 0.37</td>
<td>24.05 ± 0.37</td>
<td>21.59 ± 0.36 (25%)</td>
</tr>
<tr>
<td>convex</td>
<td>19.13 ± 0.34</td>
<td>18.63 ± 0.34</td>
<td>18.41 ± 0.34</td>
<td>19.06 ± 0.34 (10%)</td>
</tr>
</tbody>
</table>

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol

Deep Learning with Denoising Autoencoders
Learnt filters
0 % destroyed
Learnt filters
10 % destroyed
Learnt filters
25 % destroyed
Learnt filters
50% destroyed
Unsupervised initialization of layers with an explicit denoising criterion appears to help capture interesting structure in the input distribution.

This leads to intermediate representations much better suited for subsequent learning tasks such as supervised classification.
THANK YOU!
References

